Simultaneous expansion and harvest of hematopoietic stem cells and mesenchymal stem cells derived from umbilical cord blood.

نویسندگان

  • Song Kedong
  • Fan Xiubo
  • Liu Tianqing
  • Hugo M Macedo
  • Jiang LiLi
  • Fang Meiyun
  • Shi Fangxin
  • Ma Xuehu
  • Cui Zhanfeng
چکیده

The simultaneous expansion and harvest of hematopoietic stem cells and mesenchymal stem cells derived from umbilical cord blood were carried out using bioreactors. The co-culture of umbilical cord blood (UCB)-derived hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) was performed within spinner flasks and a rotating wall vessel (RWV) bioreactor using glass-coated styrene copolymer (GCSC) microcarriers. The medium used was composed of serum-free IMDM containing a cocktail of SCF 15 ng·mL(-1), FL 5 ng·mL(-1), TPO 6 ng·mL(-1), IL-3 15 ng·mL(-1), G-CSF 1 ng·mL(-1) and GM-CSF 5 ng·mL(-1). Accessory stromal cells derived from normal allogeneic adipose tissue were encapsulated in alginate-chitosan (AC) beads and used as feeding cells. The quality of the harvested UCB-HSCs and MSCs was assessed by immunophenotype analysis, methylcellulose colony and multi-lineage differentiation assays. After 12 days of culture, the fold-expansion of total cell numbers, colony-forming units (CFU-C), CD34(+)/CD45(+)/CD105(-) (HSCs) cells and CD34(-)/CD45(-)/CD105(+) (MSCs) cells using the RWV bioreactor were (3.7 ± 0.3)- , (5.1 ± 1.2)- , (5.2 ± 0.4)- , and (13.9 ± 1.2)-fold respectively, significantly better than those obtained using spinner flasks. Moreover, UCB-HSCs and UCB-MSCs could be easily separated by gravity sedimentation after the co-culture period as only UCB-MSCs adhered on to the microcarriers. Simultaneously, we found that the fibroblast-like cells growing on the surface of the GCSC microcarriers could be induced and differentiated towards the osteoblastic, chondrocytic and adipocytic lineages. Phenotypically, these cells were very similarly to the MSCs derived from bone marrow positively expressing the MSCs-related markers CD13, CD44, CD73 and CD105, while negatively expressing the HSCs-related markers CD34, CD45 and HLA-DR. It was thus demonstrated that the simultaneous expansion and harvest of UCB-HSCs and UCB-MSCs is possible to be accomplished using a feasible bioreactor culture system such as the RWV bioreactor with the support of GCSC microcarriers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تاثیر آشیانه‌های جفتی شبیه‌سازی شده با داربست پلی لاکتیک اسید در تکثیر سلول‌های بنیادی خونساز مشتق از بافت جفت انسانی

Background and Objective: Nowadays, although umbilical cord blood is a commonly used source of hematopoietic stem cell, its low frequency of these cells is the main factor limiting its clinical application. The transplantation of hematopoietic stem cells derived from placenta tissue along with umbilical cord blood cells of the same sample may be an appropriate approach to solve this problem. In...

متن کامل

Co-culture of Umbilical Cord-derived Hematopoietic and Mesenchymal Stem Cells on Protein-Coated poly-L-Lactic Acid Nanoscaffolds

Background and purpose: Umbilical cord blood (UCB) is a source of Hematopoietic stem cells (HSCs) and has received a lot of attention due to its availability, renewal capacity, proliferation rate, and differentiation potential. The main limitation of using these cells is their low quantity in one unite of UCB. To overcome this, HSCs co-culturing with UCB derived mesenchymal cells (MSCs) is a pr...

متن کامل

Mesenchymal Stem Cells as a Feeder Layer Can Prevent Apoptosis of Expanded Hematopoietic Stem Cells Derived from Cord Blood

Umbilical cord blood (UCB) has been used for transplantation in the treatment of hematologic disorders as a source of hematopoietic stem cells (HSCs). Because of insufficient number of cord blood CD34+ cells, the expansion of these cells seems to be important for clinical application. Mesenchymal stromal cells (MSCs), playing an important role in HSCs maintenance, were used as feeder layer. Apo...

متن کامل

Advances and challenges in storage, transplantation, expansion and homing of Umbilical Cord Blood Hematopoietic Stem Cells (UCB-HSCs)

Abstract Background and Objectives Umbilical cord blood hematopoietic stem cells (UCB-HSCs) have high potential capabilities in the treatment of hematological and non-hematological disorders. Awareness of biology, self-renewal, homing, expansion, storage, and transplantation can lead to optimal use of these cells.   Materials and Methods In this Review article in order to investigate the adv...

متن کامل

Nanofiber Expansion of Umbilical Cord Blood Hematopoietic Stem Cells

Background The aim of this study was the ex vivo expansion of Umbilical Cord Blood hematopoietic stem cells on biocompatible nanofiber scaffolds. Materials and Methods CD133+ hematopoietic stem cells were separated from umbilical cord blood using MidiMacs (positive selection) system by means of monocolonal antibody CD133 (microbeads) subsequently, flowcytometry method was done to asses...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of materials science. Materials in medicine

دوره 21 12  شماره 

صفحات  -

تاریخ انتشار 2010